Survey of Catalysts for Oxidation of Mercury in Flue Gas

Albert A. Presto and Evan J. Granite National Energy Technology Laboratory

DOE/NETL Mercury Control Technology Conference Pittsburgh, PA December 2006

Mercury in Flue Gas

- Elemental mercury (Hg⁰)
 - Emitted from high-temperature coal combustion
 - Insoluble in water
 - Can be removed with activated carbon injection (ACI)
- Oxidized mercury (Hg²⁺)
 - Typically assume HgCl₂
 - Water soluble, sorbs to AC
- Particle-bound mercury (Hg(p))
 - Both Hg⁰ and Hg²⁺
 - Typically a small fraction of total mercury
- Ratio of Hg⁰/Hg²⁺ depends on a number of factors (coal-Cl, LOI, time-temperature history, etc.)

Mercury Removal Technologies

Activated carbon injection (ACI)

- Inefficient mixing/contact: Requires C/Hg mass ratios>1000:1
- AC is a general sorbent
- Potentially makes fly ash unusable as cement additive
- Low cost: AC costs < \$1/lb</p>
- Current 'best bet'

Catalytic mercury oxidation

- Use catalyst to convert Hg⁰ to Hg²⁺
- Removal of Hg²⁺ with wet FGD (>90% efficient)
- Proposed catalysts: SCR catalysts, carbon-based materials, metals and metal oxides

There is no "magic bullet" – mercury control will involve multiple technologies/products

Major Uncertainty: Reaction Mechanism

- Assumption: Chlorine (HCl or Cl₂) is the oxidizer for mercury in flue gas
- Hg⁰(g) + HCl(g)/Cl₂(g) is too slow to explain observed extents of oxidation
 - -Hg⁰(g) + Cl(g) is fast, but Cl(g) concentrations are low
 - Cl₂ could be catalytically generated from HCI (Deacon process), but Cl₂ concentrations are generally low
- Likely oxidation mechanism is heterogeneous

Heterogeneous Reaction Mechanisms

Langmuir-Hinshelwood

$$A(g) \leftrightarrow A(ads)$$
 $B(g) \leftrightarrow B(ads)$
 $A(ads) + B(ads) \xrightarrow{k_{surf}} AB(ads)$
 $AB(ads) \rightarrow AB(g)$

- Reaction between adsorbed Hg⁰ and HCI
 - Both Hg⁰ and HCl can adsorb to carbon sorbents

Heterogeneous Reaction Mechanisms

Eley-Rideal

- Reaction between an adsorbed species and a gasphase species
- -Either Hg⁰ or HCl can be the adsorbed species

$$A(g) \leftrightarrow A(ads)$$

$$A(ads) + B(g) \xrightarrow{k} AB(g)$$

Heterogeneous Reaction Mechanisms

Mars-Maessen

- Hg⁰ reacts with lattice oxidant (O or Cl)
- Oxidant is replenished from gas-phase

$$A(g) \leftrightarrow A(ads)$$

$$A(ads) + M_x O_y \rightarrow AO(ads) + M_x O_{y-1}$$

$$M_x O_{y-1} + \frac{1}{2}O_2 \rightarrow M_x O_y$$

$$AO(ads) \rightarrow AO(g)$$

- This mechanism may explain effectiveness of halogenated sorbents
 - Lattice halide could serve as the oxidant

Other Major Questions

- Is Hg⁰ physically or chemically adsorbed to sorbent surfaces?
- What are the intermediate products, if any?
- Is the final oxidized species HgCl₂?
- What are the effects of co-reactants such as SO₂ and NO_x?

Big picture: We lack predictive ability!

SCR Catalysts

- Used for reduction of NO to N₂
 - $-V_2O_5/WO_3$ on TiO_2 support
 - $-T > 300^{\circ} C$

SCR Catalysts: Reaction

Mechanism could be:

- Langmuir-Hinshelwood
- Eley-Rideal
 - Either HCl or Hg⁰ adsorbed to surface

Likely competitive adsorption between NH₃ and HCl and/or Hg⁰

- Size of NH₃-rich and NH₃-poor zones determined by NH₃/NO ratio
- Increasing NH₃/NO reduces the extent of Hg⁰ oxidation, and may force Hg⁰ from the surface

SCR Catalysts: Results

Laboratory scale

- ->95% oxidation of Hg⁰ in simulated flue gas
- Slipstream of subbituminous/bituminous flue gas
 - 60-80% oxidation over 6 days
- Pilot scale test (bituminous coal)
 - SCR was placed downstream of ESP (T ~ 150° C)
 - Efficiency fell from 70% to 30% during 10-month test
 - Ash plugging may have been a problem

Full scale test

- Essentially no oxidation for lignite flue gas
- Ash plugged/blocked catalyst and limited both NO and Hg⁰ conversion

SCR Catalysts: Outlook

- Installing SCR for NO_x reduction may provide co-benefit Hg⁰ oxidation
 - Greatest benefit for bituminous coals (high CI)
 - Long-term conversion is uncertain
- Installing SCR catalyst specifically for Hg⁰ oxidation may not be economical
 - Other materials are cheaper and give higher conversion to Hg²⁺

Carbon-based Catalysts

- Carbon catalysts, activated carbons, fly ash, or ThiefTM carbon
- Mercury adsorbs to carbon sites on fly ash particles
 - Hg(ads) is oxidized (chemisorbed) on carbon surfaces
 - Correlation between extent of oxidation and UBC in ash
 - Increased oxidation across baghouses

Carbon-based Catalysts: Reaction

- HCl adsorbs to carbon sorbents
 - Langmuir-Hinshelwood mechanism
 - Adsorbed Hg⁰ and HCl
 - Eley-Rideal mechanism
 - Either HCl or Hg⁰ as adsorbed species
- NO appears to inhibit oxidation
- Role of SO₂ is unclear
 - -SO₂ can oxidize to H₂SO₄ on activated carbon

Carbon-based Catalysts: Results

- Carbon catalyst maintained >80% oxidation (pilot-scale) for two months
 - Effectiveness reduced by extended exposure to fly ash

Fly ash

Performance depends on source – high (>50%)
 conversion for bituminous ash, very low (<10%) for unpromoted lignite ash

Thief carbon

- Achieved >70% oxidation in short-term tests
- No long-term tests

Carbon-based Catalysts: Outlook

- Fly ash and Thief carbon may be economical
 - Inexpensive
 - Can be promoted with halogens
 - Regenerable
- Commercial carbon catalysts have shown good performance in pilot-scale tests
- These materials may be more cost-effective than metal or metal oxide catalysts

Metal and Metal Oxide Catalysts

- Iron/Iron oxides
- Noble metals Cu, Pd, Au, Ag
- Ir and Ir/Pt
- MnO_2

Metal catalysts: Iron

- Fe and Fe/Cr catalysts showed poor conversion
 - Studies suggest that stainless steel may catalyze oxidation
- Fe₂O₃ may enhance Hg⁰ oxidation on fly ash particles
 - Fe₂O₃ in model fly ash (fixed bed) catalyzed oxidation
 - $-\alpha$ Fe₂O₃ injected into flue gas had little catalytic ability
 - -γ- Fe₂O₃ coated onto fabric filters enhanced oxidation
 - Catalytic effect of Fe₂O₃ in fly ash may result from mix of species

Metal Catalysts: Noble Metals

Palladium

- Most exhaustively tested noble metal catalyst
- Pilot-scale test using Pd deposited onto commercial forms
- ->80% oxidation for ten months
 - Sonic horns required to remove ash particles
- Preliminary economics
 - 62% savings over ACI for 80% Hg removal
 - 9% savings over ACI for 90% Hg removal

Metal Catalysts: Noble Metals

Expect similar performance for Cu, Au, Ag as Pd

- Lack of mechanistic understanding is a hindrance!
- Example: Au catalyst
 - Meischen and Van Pelt: Hg⁰ + HCl
 - Zhao et al: Hg⁰ + Cl₂; HCl reduced oxidation relative to Cl₂ alone

Cu is an interesting case

- CuO in a model fly ash oxidized >90% of Hg⁰ from simulated flue gas
- CuCl can catalyze Hg⁰ even without HCl (Mars-Maessen reaction?)

Metal Catalysts: Outlook

- Noble metals (Pd) have promise
 - Possibly more cost-effective than ACI/COHPAC
 - Catalyst loading as little as 1 wt.%
- More work is required to better understand reaction dynamics

Recommendations for Future Research

- Understanding reaction mechanism and kinetics is paramount!
 - Predictive ability
 - Requires lab-scale tests using simulated flue gas
 - Downside: Differences between simulated and real flue gas
- Novel catalysts and catalyst supports
 - Cost effectiveness, regeneration

Acknowledgments

ORISE, IEP Program

